Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 750
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 27(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36557886

RESUMEN

Mentha suaveolens (MS), Conyza canadensis (CC), Teucrium polium (TP) and Salvia verbenaca (SV) are used in Morocco to treat hypertension. Our aim was to characterize the composition and vasoreactivity of extracts of MS, CC, TP and SV. The chemical compositions of aqueous extracts of MS, SV and TP, and of a hydromethanolic extract of CC, were identified by HPLC-DAD. The vasoreactive effect was tested in rings of the thoracic aorta of female Wistar rats (8-14 weeks-old) pre-contracted with 10 µM noradrenaline, in the absence or presence of L-NAME 100 µM, indomethacin 10 µM or atropine 6 µM, to inhibit nitric oxide synthase, cyclooxygenase or muscarinic receptors, respectively. L-NAME and atropine decreased the vasorelaxant effect caused by low concentrations of MS. Atropine and indomethacin decreased the vasorelaxant effect of low concentrations of SV. High concentrations of MS or SV and the effect of SV and TP were not altered by any antagonist. The activation of muscarinic receptors and NO or the cyclooxygenase pathway underlie the vasorelaxant effect of MS and SV, respectively. Neither of those mechanisms underlines the vasorelaxant effect of CC and TP. These vasorelaxant effect might support the use of herbal teas from these plants as anti-hypertensives in folk medicine.


Asunto(s)
Conyza , Mentha , Salvia , Teucrium , Ratas , Animales , Vasodilatadores/farmacología , Ratas Wistar , Mentha/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Salvia/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/metabolismo , Vasodilatación , Aorta/metabolismo , Aorta Torácica , Receptores Muscarínicos/metabolismo , Derivados de Atropina/metabolismo , Derivados de Atropina/farmacología
2.
Adv Nutr ; 13(5): 1989-2001, 2022 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-35675221

RESUMEN

The brain and peripheral nervous system provide oversight to muscle physiology and metabolism. Muscle is the largest organ in the body and critical for glucose sensitivity, prevention of diabetes, and control of obesity. The central nervous system produces endocannabinoids (eCBs) that play a role in brain neurobiology, such as inflammation and pain. Interestingly, studies in humans and rodents show that a moderate duration of exercise increases eCBs in the brain and blood and influences cannabinoid receptors. Cannabinoid actions in the nervous system have advanced our understanding of pain, well-being, and disease. Nutrition is an important aspect of brain and eCB physiology because eCBs are biosynthesized from PUFAs. The primary eCB metabolites are derived from arachidonic acid, a 20:4n-6 (ω-6) PUFA, and the n-3 (ω-3) PUFAs, EPA and DHA. The eCBs bind to cannabinoid receptors CB1 and CB2 to exert a wide range of activities, such as stimulating appetite, influencing energy metabolism, supporting the immune system, and facilitating neuroplasticity. A diet containing different essential n-6 and n-3 PUFAs will dominate the formation of specific eCBs, and subsequently their actions as ligands for CB1 and CB2. The eCBs also function as substrates for cyclooxygenase enzymes, including potential substrates for the oxylipins (OxLs), which can be proinflammatory. Together, the eCBs and OxLs act as modulators of neuroinflammation. Thus, dietary PUFAs have implications for exercise responses via synthesis of eCBs and their effects on neuroinflammation. Neurotrophins also participate in interactions between diet and the eCBs, specifically brain-derived neurotrophic factor (BDNF). BDNF supports neuroplasticity in cooperation with the endocannabinoid system (ECS). This review will describe the role of PUFAs in eCB biosynthesis, discuss the ECS and OxLs in neuroinflammation, highlight the evidence for exercise effects on eCBs, and describe eCB and BDNF actions on neuroplasticity.


Asunto(s)
Cannabinoides , Ácidos Grasos Omega-3 , Ácido Araquidónico/metabolismo , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cannabinoides/metabolismo , Dieta , Endocannabinoides/metabolismo , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Insaturados , Glucosa/metabolismo , Humanos , Ligandos , Enfermedades Neuroinflamatorias , Plasticidad Neuronal , Oxilipinas , Dolor/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Receptores de Cannabinoides/metabolismo
3.
Clin Sci (Lond) ; 136(9): 675-694, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35441670

RESUMEN

Vascular endothelial growth factor antagonism with angiogenesis inhibitors in cancer patients induces a 'preeclampsia-like' syndrome including hypertension, proteinuria and elevated endothelin (ET)-1. Cyclo-oxygenase (COX) inhibition with aspirin is known to prevent the onset of preeclampsia in high-risk patients. In the present study, we hypothesised that treatment with aspirin would prevent the development of angiogenesis inhibitor-induced hypertension and kidney damage. Our aims were to compare the effects of low-dose (COX-1 inhibition) and high-dose (dual COX-1 and COX-2 inhibition) aspirin on blood pressure, vascular function, oxidative stress, ET-1 and prostanoid levels and kidney damage during angiogenesis-inhibitor therapy in rodents. To this end, Wistar Kyoto rats were treated with vehicle, angiogenesis inhibitor (sunitinib) alone or in combination with low- or high-dose aspirin for 8 days (n=5-7/group). Our results demonstrated that prostacyclin (PGI2) and ET-1 were increased during angiogenesis-inhibitor therapy, while thromboxane (TXA2) was unchanged. Both low- and high-dose aspirin blunted angiogenesis inhibitor-induced hypertension and vascular superoxide production to a similar extent, whereas only high-dose aspirin prevented albuminuria. While circulating TXA2 and prostaglandin F2α levels were reduced by both low- and high-dose aspirin, circulating and urinary levels PGI2 were only reduced by high-dose aspirin. Lastly, treatment with aspirin did not significantly affect ET-1 or vascular function. Collectively our findings suggest that prostanoids contribute to the development of angiogenesis inhibitor-induced hypertension and renal damage and that targeting the prostanoid pathway could be an effective strategy to mitigate the unwanted cardiovascular and renal toxicities associated with angiogenesis inhibitors.


Asunto(s)
Hipertensión , Preeclampsia , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Aspirina/farmacología , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/metabolismo , Endotelina-1/metabolismo , Epoprostenol/metabolismo , Epoprostenol/farmacología , Epoprostenol/uso terapéutico , Femenino , Humanos , Hipertensión/inducido químicamente , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Riñón/metabolismo , Preeclampsia/inducido químicamente , Preeclampsia/tratamiento farmacológico , Preeclampsia/metabolismo , Embarazo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Ratas , Factor A de Crecimiento Endotelial Vascular/metabolismo
4.
J Ethnopharmacol ; 285: 114873, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34848360

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine considers that the etiology and pathogenesis of non-alcoholic fatty liver disease (NAFLD) are related to liver depression and qi stagnation. Saffron and its active ingredient, crocetin (CCT), are used for the treatment of metabolic diseases owing to their "Liver deobstruent" and "Liver tonic" effects. However, the effect of CCT on NAFLD has not been fully elucidated. In the present study, the effect and potential molecular mechanism of CCT were explored in both in vivo and in vitro models of NAFLD. MATERIALS AND METHODS: CCT was isolated from saffron and purity and structure characterization were performed using HPLC, MS, 1H-NMR, and 13C-NMR. The effect of CCT on the viability of L02 cells and its maximum tolerable concentration (MTC) in zebrafish were investigated. Free fatty acids (FFA) and thioacetamide (TAA) were used to induce lipid accumulation in L02 cells and steatosis in zebrafish, respectively. The effects of CCT on indexes related to lipid metabolism, oxidative stress, and mitochondrial function in NAFLD models were explored using biochemical assay kits, Western blot analysis, Reverse Transcription-Polymerase Chain Reaction (RT-PCR), histopathology analysis, and determination of mitochondrial membrane potential (ΔΨm). Morphological analysis of mitochondria was performed using transmission electron microscopy (TEM). RESULTS: The levels of triglyceride (TG), total cholesterol (TC), malondialdehyde (MDA), and alanine/aspartate aminotransferases (ALT/AST) activities in FFA treated L02 cells were significantly reduced after CCT treatment. CCT treatment significantly increased ATP concentration, ΔΨm, and activities of superoxide dismutase (SOD), catalase (CAT), and cytochrome c oxidase (COX IV) in FFA treated L02 cells. TEM images showed restoration of mitochondrial morphology. CCT decreased ATP concentration and upregulated expression of B-cell lymphoma-2 (Bcl-2) and COX IV, whereas, CCT downregulated expression of BCL2-Associated X (Bax) and cleaved caspase-3 in TAA treated zebrafish. These findings indicated that mitochondrial dysfunction was alleviated after CCT treatment. Oil Red O staining of L02 cells and zebrafish showed that CCT treatment reversed the accumulation of lipid droplets. CONCLUSION: In summary, CCT treatment effectively alleviated the symptoms of NAFLD and restored mitochondrial function in L02 cells and zebrafish NAFLD model.


Asunto(s)
Carotenoides/uso terapéutico , Mitocondrias Hepáticas/efectos de los fármacos , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Vitamina A/análogos & derivados , Animales , Supervivencia Celular , Regulación de la Expresión Génica/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Humanos , Estrés Oxidativo/efectos de los fármacos , Fitoterapia , Prostaglandina-Endoperóxido Sintasas/genética , Prostaglandina-Endoperóxido Sintasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Vitamina A/uso terapéutico , Pez Cebra
5.
J Ethnopharmacol ; 281: 114517, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34389445

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: In the traditional medicine system, plants have been utilized as a rich source of anti-microbial, anti-inflammatory, anti-cancer, anti-viral and anti-oxidant compounds. The biological properties of plant-based drugs depend on their interaction with endophytes which persist as an important provider of bioactive secondary metabolites. Bacterial endophytes secrete anti-inflammatory molecules whose activity can be the base for the anti-inflammatory property of the plant. AIM OF THE STUDY: During the screening of endophytes from Emilia sonchifolia, we isolated six different bacteria whose potential as the sources of anti-inflamamtory compounds have been aimed at in this study. MATERIALS AND METHODS: Anti-inflammatory activity of the ethyl acetate extract of endophytes was studied by both in vitro and in vivo analyses. In vitro study was done using protein denaturation, COX, LOX, iNOS, myeloperoxidase and nitric oxide assays and in vivo analysis was carried out by carrageenan-induced and formalin-induced paw oedema tests. The expression level of anti-inflammatory genes such as COX-2 and NfKb was confirmed by real time PCR. RESULTS: We confirmed anti-inflammatory activity of the ethyl acetate extract of bacterial endophytes of E sonchifolia by both in vitro and in vivo experiments. Carrageenan- and formalin-induced inflammations in mice were effectively reduced by the administration of the bacterial extract. Among the isolates, strain ES1effectively reduced inflammation. Gene expression studies confirmed reduction in the expression of COX-2 and NfKb genes in the presence of ES1 extract. CONCLUSION: The present investigation demonstrated the anti-inflammatory property of the isolated bacterial endophyte ES1 (Bacillus subtilis strain-MG 692780) and thus justifies the possible role of endophytes in contributing anti-inflammatory property to E sonchifolia which is ethno-botanically important as a source of anti-inflammatory drug.


Asunto(s)
Antiinflamatorios/uso terapéutico , Asteraceae/microbiología , Bacillus subtilis/química , Mezclas Complejas/uso terapéutico , Edema/tratamiento farmacológico , Endófitos/química , Acetatos/química , Animales , Antiinflamatorios/farmacología , Carragenina , Mezclas Complejas/farmacología , Edema/inducido químicamente , Formaldehído , Interleucina-6/metabolismo , Lipooxigenasa/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , FN-kappa B/genética , Peroxidasa/metabolismo , Prostaglandina-Endoperóxido Sintasas/genética , Prostaglandina-Endoperóxido Sintasas/metabolismo , Células RAW 264.7 , Solventes/química , Factor de Necrosis Tumoral alfa/metabolismo
6.
J Pharm Pharmacol ; 73(10): 1310-1318, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34223630

RESUMEN

OBJECTIVE: To analyse the antinociceptive interaction between quercetin (QUER) and diclofenac (DIC) in experimental arthritic gout-pain. METHODS: The antinociceptive effect of DIC and QUER alone and in combination were evaluated using an arthritic gout-pain model. Pain was induced through intra-articular administration of uric acid in the rats and the treatments were administered 2 h later. Additionally, the cyclooxygenase (COX) activity was determined in rats treated with DIC, QUER and their combination. KEY FINDINGS: DIC induced a maximal effect of 69.7 ± 2.7% with 3.1 mg/kg; whereas QUER only produced 17.6 ± 2.6% with the maximal dose (316 mg/kg). Ten of twelve DIC + QUER combinations showed a lesser antinociceptive effect than DIC alone did (P < 0.05). Moreover, DIC reduced total-COX (70.4 ± 1.3 versus 52.4 ± 1.8 and 77.4 ± 9.0 versus 56.1 ± 1.3, P < 0.05) and COX-2 (60.1 ± 1.0 versus 42.4 ± 1.8 and 58.1 ± 2.4 versus 48.7 ± 1.3, P < 0.05) activity after 1 and 3 h, respectively. Nevertheless, only the COX-2 activity induced by DIC was prevented in the presence of QUER (63.2 ± 3.0 versus 60.1 ± 1.0 and 56.6 ± 1.3 versus 58.1 ± 2.4 at 1 and 3 h, respectively). CONCLUSIONS: All these data demonstrated that the simultaneous administration of QUER + DIC produces an unfavorable interaction on the antinociceptive effect of DIC. Therefore, this combination might not be recommendable to relieve arthritic gout-pain.


Asunto(s)
Antiinflamatorios no Esteroideos/administración & dosificación , Artralgia/tratamiento farmacológico , Diclofenaco/administración & dosificación , Gota/tratamiento farmacológico , Interacciones de Hierba-Droga , Nocicepción/efectos de los fármacos , Quercetina/administración & dosificación , Analgésicos/administración & dosificación , Analgésicos/efectos adversos , Analgésicos/uso terapéutico , Animales , Antiinflamatorios no Esteroideos/efectos adversos , Antiinflamatorios no Esteroideos/uso terapéutico , Artralgia/metabolismo , Artritis/tratamiento farmacológico , Artritis/metabolismo , Artritis/patología , Diclofenaco/efectos adversos , Diclofenaco/uso terapéutico , Modelos Animales de Enfermedad , Quimioterapia Combinada , Gota/metabolismo , Gota/patología , Articulaciones/efectos de los fármacos , Magnoliopsida/química , Masculino , Manejo del Dolor , Extractos Vegetales/administración & dosificación , Extractos Vegetales/efectos adversos , Extractos Vegetales/uso terapéutico , Prostaglandina-Endoperóxido Sintasas/metabolismo , Quercetina/efectos adversos , Quercetina/uso terapéutico , Ratas Wistar , Ácido Úrico
7.
Biomolecules ; 11(5)2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067705

RESUMEN

Tripterygium wilfordii glycosides (TWG) is a traditional Chinese medicine with effectiveness against rheumatoid arthritis (RA), supported by numerous clinical trials. Lipid mediators (LM) are biomolecules produced from polyunsaturated fatty acids mainly by cyclooxygenases (COX) and lipoxygenases (LOX) in complex networks which regulate inflammation and immune responses and are strongly linked to RA. The mechanism by which TWG affects LM networks in RA treatment remains elusive. Employing LM metabololipidomics using ultra-performance liquid chromatography-tandem mass spectrometry revealed striking modulation of LM pathways by TWG in human monocyte-derived macrophage (MDM) phenotypes. In inflammatory M1-MDM, TWG (30 µg/mL) potently suppressed agonist-induced formation of 5-LOX products which was confirmed in human PMNL and traced back to direct inhibition of 5-LOX (IC50 = 2.9 µg/mL). TWG also efficiently blocked thromboxane formation in M1-MDM without inhibiting other prostanoids and COX enzymes. Importantly, in anti-inflammatory M2-MDM, TWG (30 µg/mL) induced pronounced formation of specialized pro-resolving mediators (SPM) and related 12/15-LOX-derived SPM precursors, without COX and 5-LOX activation. During MDM polarization, TWG (1 µg/mL) decreased the capacity to generate pro-inflammatory 5-LOX and COX products, cytokines and markers for M1 phenotypes. Together, suppression of pro-inflammatory LM but SPM induction may contribute to the antirheumatic properties of TWG.


Asunto(s)
Antirreumáticos/administración & dosificación , Araquidonato 5-Lipooxigenasa/metabolismo , Glicósidos/farmacología , Prostaglandina-Endoperóxido Sintasas/metabolismo , Tripterygium/química , Células A549 , Antirreumáticos/farmacología , Cromatografía Líquida de Alta Presión , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inmunidad Innata/efectos de los fármacos , Lipidómica/métodos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Prostaglandinas/metabolismo , Espectrometría de Masas en Tándem , Tromboxanos
8.
Neurosci Lett ; 756: 135961, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34022265

RESUMEN

That nesfatin-1 is a neuromodulatory peptide for the cardiovascular system is well documented. Several central receptors have been shown to mediate the cardiovascular effects of nesfatin-1. Immunohistochemistry and Western blot studies showed that nesfatin-1 activated the expression of the central cyclooxygenase (COX) -1, -2 and lipoxygenase (LOX). In addition, microdialysis study showed that nesfatin-1 increased the release of total prostaglandins and leukotrienes from the hypothalamus. The present study investigated whether the central COX and LOX enzymes have a direct mediating role in the MAP and HR responses of nesfatin-1. Intracerebroventricularly administered nesfatin-1 produced dose-dependent pressor and phasic HR responses in normotensive conscious rats Sprague Dawley. Central pretreatment with a COX1/2 inhibitor, ibuprofen, completely blocked the nesfatin-1-induced responses. However, central pretreatment with a nonselective LOX inhibitor, nordihydroguaiaretic acid, partially attenuated the cardiovascular responses induced by nesfatin-1. The results suggest that centrally administered nesfatin-1 activates the central enzymes COX and LOX, which may be involved in the cardiovascular responses as a novel central mechanism for nesfatin-1.


Asunto(s)
Presión Arterial/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Lipooxigenasa/metabolismo , Nucleobindinas/administración & dosificación , Prostaglandina-Endoperóxido Sintasas/metabolismo , Animales , Sistema Cardiovascular/efectos de los fármacos , Inhibidores de la Ciclooxigenasa 2/farmacología , Relación Dosis-Respuesta a Droga , Hipotálamo/metabolismo , Ibuprofeno/farmacología , Masculino , Ratas , Ratas Sprague-Dawley
9.
PLoS One ; 16(4): e0250276, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33886622

RESUMEN

Cyclooxygenase (COX) is a two-step enzyme that converts arachidonic acid into prostaglandin H2, a labile intermediate used in the production of prostaglandin E2 (PGE2) and prostaglandin F2α (PGF2α). In vertebrates and corals, COX must be N-glycosylated on at least two asparagine residues in the N-(X)-S/T motif to be catalytically active. Although COX glycosylation requirement is well-characterized in many species, whether crustacean COXs require N-glycosylation for their enzymatic function have not been investigated. In this study, a 1,842-base pair cox gene was obtained from ovarian cDNA of the black tiger shrimp Penaeus monodon. Sequence analysis revealed that essential catalytic residues and putative catalytic domains of P. monodon COX (PmCOX) were well-conserved in relation to other vertebrate and crustacean COXs. Expression of PmCOX in 293T cells increased levels of secreted PGE2 and PGF2α up to 60- and 77-fold, respectively, compared to control cells. Incubation of purified PmCOX with endoglycosidase H, which cleaves oligosaccharides from N-linked glycoproteins, reduced the molecular mass of PmCOX. Similarly, addition of tunicamycin, which inhibits N-linked glycosylation, in PmCOX-expressing cells resulted in PmCOX protein with lower molecular mass than those obtained from untreated cells, suggesting that PmCOX was N-glycosylated. Three potential glycosylation sites of PmCOX were identified at N79, N170 and N424. Mutational analysis revealed that although all three residues were glycosylated, only mutations at N170 and N424 completely abolished catalytic function. Inhibition of COX activity by ibuprofen treatment also decreased the levels of PGE2 in shrimp haemolymph. This study not only establishes the presence of the COX enzyme in penaeid shrimp, but also reveals that N-glycosylation sites are highly conserved and required for COX function in crustaceans.


Asunto(s)
Penaeidae/enzimología , Prostaglandina-Endoperóxido Sintasas/genética , Prostaglandina-Endoperóxido Sintasas/metabolismo , Animales , Secuencia de Bases , Inhibidores de la Ciclooxigenasa/farmacología , Análisis Mutacional de ADN/métodos , ADN Complementario/genética , Dinoprost/metabolismo , Dinoprostona/metabolismo , Femenino , Glicosilación/efectos de los fármacos , Células HEK293 , Hemolinfa/metabolismo , Humanos , Ibuprofeno/farmacología , Peso Molecular , Ovario/metabolismo , Prostaglandina-Endoperóxido Sintasas/química , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transfección , Tunicamicina/farmacología
10.
Cytokine ; 142: 155475, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33667961

RESUMEN

BACKGROUND: Progression of chronic inflammatory disease, atherosclerosis is a multifactorial process. Cluster of differentiation 36 (CD36) mediated downstream activation of Toll like receptor 2 (TLR2) and NLRP3 (Nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3) inflammasome signaling pathway actively participates during chronic inflammation. Nowadays, synergistic combinations of bioactive compounds attained priority in the field of drug discovery and development as therapeutic agents. An investigation regarding the anti-inflammatory potential of a novel drug formulation, BASk which is a combination of three bioactive compounds Betulinic acid (B):Apigenin (A):Skimmianine (Sk) remains the focus area of this research study. We also elucidate the molecular mechanism behind the therapeutic potential of BASk through CD36 mediated activation TLR2-NLRP3 signaling pathway. METHODS: OxLDL induced hPBMCs used to screen out a suitable combination of BASk via MTT, COX, LOX, NOS and MPO assays. Hypercholesterolemia is induced in rabbits by supplementing with 1% cholesterol + 0.5% cholic acid and treated with BASk (2:2:1) (5 mg/Kg) and atorvastatin (10 mg/Kg) for 60 days. CD36, TLR2, NLRP3, NFκB, cytokines, endothelial damage were quantified by reverse transcription, real time PCR, ELISA, flow cytometry and histopathology. RESULTS: hPBMCs pretreated with BASk at 2:2:1 ratio significantly decreased the activities of COX, 15-LOX, NOS and MPO on OxLDL induction than quercetin. Down regulation of CD36, TLR2, MyD88, TRAF6 by BASk further buttressed NLRP3 inflammasome activation mediated by the transcription factor NFκB. This is in correlation with the effect of BASk by balancing pro (IL-1ß, IL-18) and anti-inflammatory (TGF-ß) mediators in the aortic endothelial cells. CONCLUSION: BASk exerted its anti-inflammatory potential by reducing pro-inflammatory mediators during cholesterol supplementation via down regulating CD36 mediated TLR2 - NLRP3 inflammasome cascade. This deciphers a synergistic combination named BASk (2:2:1) as a novel drug formulation against chronic inflammatory disease, atherosclerosis.


Asunto(s)
Apigenina/farmacología , Antígenos CD36/metabolismo , Colesterol en la Dieta/efectos adversos , Dieta Alta en Grasa , Triterpenos Pentacíclicos/farmacología , Quinolinas/farmacología , Transducción de Señal , Receptor Toll-Like 2/metabolismo , Animales , Aorta/efectos de los fármacos , Aorta/patología , Araquidonato 15-Lipooxigenasa/metabolismo , Aterosclerosis/sangre , Biomarcadores/sangre , Supervivencia Celular/efectos de los fármacos , Humanos , Mediadores de Inflamación/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lípidos/sangre , Masculino , Factor 88 de Diferenciación Mieloide/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Óxido Nítrico Sintasa/metabolismo , Peroxidasa/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Conejos , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Factor de Transcripción ReIA/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Ácido Betulínico
11.
Food Funct ; 12(2): 802-814, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33393955

RESUMEN

Alibertia edulis leaf extract is commonly used in folk medicine, with rutin caffeic and vanillic acids being its major compounds. The Alibertia edulis leaf extract was investigated for its pharmacological effects via platelet aggregation, calcium mobilization, cyclic nucleotides levels, vasodilator-stimulated phosphoprotein Ser157 and Ser239 and protein kinase Cß2 phosphorylation, thromboxane B2, cyclooxygenases 1 and 2, docking and molecular dynamics. Alibertia edulis leaf extract significantly inhibited (100-1000 µg mL-1) platelet aggregation induced by different agonists. Arachidonic acid increased levels of calcium and thromboxane B2, phosphorylation of vasodilator-stimulated phosphoprotein Ser157 and Ser239, and protein kinase Cß, which were significantly reduced by Alibertia edulis leaf extract, rutin, and caffeic acid as well mixtures of rutin/caffeic acid. Cyclooxygenase 1 activity was inhibited for Alibertia edulis leaf extract, rutin and caffeic acid. These inhibitions were firsrtly explored by specific stabilization of rutin and caffeic acid compared to diclofenac at the catalytic site from docking score and free-energy dissociation profiles. Then, simulations detailed the rutin interactions close to the heme group and Tyr385, responsible for catalyzing the conversion of arachidonic acid to its products. Our results reveal the antiplatelet aggregation properties of Alibertia edulis leaf extract, rutin and caffeic acid providing pharmacological information about its origin from cyclooxygenase 1 inhibition and its downstream pathway.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Extractos Vegetales/farmacología , Agregación Plaquetaria/efectos de los fármacos , Prostaglandina-Endoperóxido Sintasas/metabolismo , Rubiaceae/química , Tromboxanos/antagonistas & inhibidores , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/administración & dosificación , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Adenosina Difosfato/administración & dosificación , Adenosina Difosfato/farmacología , Animales , Ácido Araquidónico/administración & dosificación , Ácido Araquidónico/farmacología , Calcio/metabolismo , Colágeno/administración & dosificación , Colágeno/farmacología , Inhibidores de la Ciclooxigenasa , Humanos , Extractos Vegetales/química , Hojas de la Planta/química , Tromboxanos/genética , Tromboxanos/metabolismo , Pez Cebra
12.
Mediators Inflamm ; 2021: 6699560, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33505216

RESUMEN

Licorice extract is a Chinese herbal medication most often used as a demulcent or elixir. The extract usually consists of many components but the key ingredients are glycyrrhizic (GL) and glycyrrhetinic acid (GA). GL and GA function as potent antioxidants, anti-inflammatory, antiviral, antitumor agents, and immuneregulators. GL and GA have potent activities against hepatitis A, B, and C viruses, human immunodeficiency virus type 1, vesicular stomatitis virus, herpes simplex virus, influenza A, severe acute respiratory syndrome-related coronavirus, respiratory syncytial virus, vaccinia virus, and arboviruses. Also, GA was observed to be of therapeutic valve in human enterovirus 71, which was recognized as the utmost regular virus responsible for hand, foot, and mouth disease. The anti-inflammatory mechanism of GL and GA is realized via cytokines like interferon-γ, tumor necrotizing factor-α, interleukin- (IL-) 1ß, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, and IL-17. They also modulate anti-inflammatory mechanisms like intercellular cell adhesion molecule 1 and P-selectin, enzymes like inducible nitric oxide synthase (iNOS), and transcription factors such as nuclear factor-kappa B, signal transducer and activator of transcription- (STAT-) 3, and STAT-6. Furthermore, DCs treated with GL were capable of influencing T-cell differentiation toward Th1 subset. Moreover, GA is capable of blocking prostaglandin-E2 synthesis via blockade of cyclooxygenase- (COX-) 2 resulting in concurrent augmentation nitric oxide production through the enhancement of iNOS2 mRNA secretion in Leishmania-infected macrophages. GA is capable of inhibiting toll-like receptors as well as high-mobility group box 1.


Asunto(s)
Antiinflamatorios/farmacocinética , Ácido Glicirretínico/farmacocinética , Ácido Glicirrínico/farmacocinética , Factores Inmunológicos/farmacocinética , Animales , Citocinas/metabolismo , Medicamentos Herbarios Chinos/farmacocinética , Glycyrrhiza/química , Humanos , Inflamación , Interferones/metabolismo , Interleucinas/metabolismo , Leishmania/metabolismo , Sistema de Señalización de MAP Quinasas , Macrófagos/metabolismo , Macrófagos/parasitología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Prostaglandinas/metabolismo , ARN Mensajero/metabolismo , Células TH1/citología , Receptores Toll-Like/metabolismo
13.
Molecules ; 26(3)2021 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-33498831

RESUMEN

BACKGROUND: Cardioprotective effects of H2S are being suggested by numerous studies. Furthermore, H2S plays a role in relaxation of vascular smooth muscle, protects against oxidative stress, and modulates inflammation. Long-term high-dose use of NSAIDs, such as ibuprofen, have been associated with enhanced cardiovascular risk. The goal of the present work is the synthesis and basic pharmacological characterization of a newly designed H2S-releasing ibuprofen derivative. METHODS: Following the synthesis of EV-34, a new H2S-releasing derivative of ibuprofen, oxidative stability assays were performed (Fenton and porphyrin assays). Furthermore, stability of the molecule was studied in rat serum and liver lysates. H2S-releasing ability of the EC-34 was studied with a hydrogen sulfide sensor. MTT (3-(4,5-dimethylthiazol 2-yl)-2,5-(diphenyltetrazolium bromide)) assay was carried out to monitor the possible cytotoxic effect of the compound. Cyclooxygenase (COX) inhibitory property of EV-34 was also evaluated. Carrageenan assay was carried out to compare the anti-inflammatory effect of EV-34 to ibuprofen in rat paws. RESULTS: The results revealed that the molecule is stable under oxidative condition of Fenton reaction. However, EV-34 undergoes biodegradation in rat serum and liver lysates. In cell culture medium H2S is being released from EV-34. No cytotoxic effect was observed at concentrations of 10, 100, 500 µM. The COX-1 and COX-2 inhibitory effects of the molecule are comparable to those of ibuprofen. Furthermore, based on the carrageenan assay, EV-34 exhibits the same anti-inflammatory effect to that of equimolar amount of ibuprofen (100 mg/bwkg). CONCLUSION: The results indicate that EV-34 is a safe H2S releasing ibuprofen derivative bearing anti-inflammatory properties.


Asunto(s)
Sulfuro de Hidrógeno/química , Ibuprofeno/química , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Línea Celular , Inhibidores de la Ciclooxigenasa/química , Inhibidores de la Ciclooxigenasa/farmacología , Ibuprofeno/farmacología , Inflamación/tratamiento farmacológico , Masculino , Estrés Oxidativo/efectos de los fármacos , Prostaglandina-Endoperóxido Sintasas/metabolismo , Ratas , Ratas Sprague-Dawley
14.
Drug Dev Res ; 82(4): 469-473, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33496060

RESUMEN

Despite vigorous efforts, the COVID-19 pandemic continues to take a toll on the global health. The contemporary therapeutic regime focused on the viral spike proteins, viral 3CL protease enzyme, immunomodulation, inhibition of viral replication, and providing a symptomatic relief encouraged the repurposing of drugs to meet the urgency of treatment. Similarly, the representative drugs that proved beneficial to alleviate SARS-CoV-1, MERS-CoV, HIV, ZIKV, H1N1, and malarial infection in the past presented a sturdy candidature for ameliorating the COVID-19 therapeutic doctrine. However, most of the deliberations for developing effective pharmaceuticals proved inconsequential, thereby encouraging the identification of new pathways, and novel pharmaceuticals for capping the COVID-19 infection. The COVID-19 contagion encompasses a burst release of the cytokines that increase the severity of the infection mainly due to heightened immunopathogenicity. The pro-inflammatory metabolites, COX-2, cPLA2, and 5-LOX enzymes involved in their generation, and the substrates that instigate the origination of the innate inflammatory response therefore play an important role in intensifying and worsening of the tissue morbidity related to the coronavirus infection. The deployment of representative drugs for inhibiting these overexpressed immunogenic pathways in the tissues invaded by coronaviruses has been a matter of debate since the inception of the pandemic. The effectiveness of NSAIDs such as Aspirin, Indomethacin, Diclofenac, and Celecoxib in COVID-19 coagulopathy, discouraging the SARS viral replication, the inflammasome deactivation, and synergistic inhibition of H5N1 viral infection with representative antiviral drugs respectively, have provided a silver lining in adjuvant COVID-19 therapy. Since the anti-inflammatory NSAIDs and COXIBs mainly function by reversing the COX-2 overexpression to modulate the overproduction of pro-inflammatory cytokines and chemokines, these drugs present a robust treatment option for COVID-19 infection. This commentary succinctly highlights the various claims that support the status of immunomodulatory NSAIDs, and COXIBs in the adjuvant COVID-19 therapy.


Asunto(s)
COVID-19/enzimología , Factores Inmunológicos/uso terapéutico , Prostaglandina-Endoperóxido Sintasas/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Quimioterapia Adyuvante/métodos , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Humanos , Factores Inmunológicos/farmacología , Prostaglandina-Endoperóxido Sintasas/efectos de los fármacos , Prostaglandina-Endoperóxido Sintasas/fisiología , Tratamiento Farmacológico de COVID-19
15.
Exp Physiol ; 106(2): 450-462, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33347660

RESUMEN

NEW FINDINGS: What is the central question of this study? Does short-term heat acclimation enhance whole-body evaporative heat loss and augment nitric oxide synthase (NOS)-dependent cutaneous vasodilatation and NOS- and cyclooxygenase (COX)-dependent sweating, in exercising older men? What is the main finding and its importance? Our preliminary data (n = 8) demonstrated that short-term heat acclimation improved whole-body evaporative heat loss, but it did not influence the effects of NOS and/or COX inhibition on cutaneous vasodilatation or sweating in older men during an exercise-heat stress. These outcomes might imply that although short-term heat acclimation enhances heat dissipation in older men, it does not modulate NOS- and COX-dependent control of cutaneous vasodilatation or sweating on the forearm. ABSTRACT: Ageing is associated with decrements in whole-body heat loss (evaporative + dry heat exchange), which might stem from alterations in nitric oxide synthase (NOS)- and cyclooxygenase (COX)-dependent cutaneous vasodilatation and sweating. We evaluated whether short-term heat acclimation would (i) enhance whole-body heat loss primarily by increasing evaporative heat loss, and (ii) augment NOS-dependent cutaneous vasodilatation and NOS- and COX-dependent sweating, in exercising older men. Eight older men [mean (SD) age, 59 (8) years] completed a calorimetry and microdialysis trial before and after 7 days of exercise-heat acclimation. For the calorimetry trials, whole-body evaporative and dry heat exchange were assessed using direct calorimetry during 30 min bouts of cycling at light, moderate and vigorous metabolic heat productions (150, 200 and 250 W/m2 , respectively) in dry heat (40°C, 20% relative humidity). For the microdialysis trials, local cutaneous vascular conductance and sweat rate were assessed during 60 min exercise in the heat (35°C, 20% relative humidity) at four dorsal forearm skin sites treated with lactated Ringer solution (control), NOS inhibitor, COX inhibitor or combined NOS and COX inhibitors, via microdialysis. Evaporative heat loss during moderate (P = 0.036) and vigorous (P = 0.021) exercise increased after acclimation. Inhibition of NOS alone reduced cutaneous vascular conductance to a similar extent before and after acclimation (P < 0.040), whereas separate and combined NOS and COX inhibition had no significant effects on sweating relative to the control site (P = 0.745). Our preliminary results might suggest that short-term heat acclimation improves evaporative heat loss, but does not significantly modulate the contributions of NOS or COX to cutaneous vasodilatation or sweating on the forearm in older men during an exercise-heat stress.


Asunto(s)
Aclimatación/fisiología , Ejercicio Físico/fisiología , Calor , Óxido Nítrico Sintasa/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Termogénesis/fisiología , Anciano , Humanos , Masculino , Persona de Mediana Edad , Sudoración/fisiología
16.
J Ethnopharmacol ; 270: 113734, 2021 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-33359857

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cornus officinalis var. koreana Kitam (CO) is found predominantly in China but also in Korea and Japan and has been used in Eastern medicine for over 2000 years to treat several conditions including diabetes, cardiovascular disease and kidney disease. Chronic inflammation underlies the pathogenesis of these diseases. The mechanisms by which CO may exert its anti-inflammatory effects have not been well defined. AIM OF THE STUDY: We aimed to determine whether Cornus officinalis var. koreana Kitam extract (COE) attenuate the inflammatory response induced by lipopolysaccharide (LPS) in RAW 264.7 macrophages, and to elucidate the mechanisms which contribute to these anti-inflammatory effects. MATERIALS AND METHODS: COE was prepared using ethanolic extraction, followed by solvent evaporation and freeze-drying. RAW 264.7 macrophages were treated with 0, 50, 100, 200 and 400 µg/ml of COE. After 2 h, cells were treated with 100 ng/ml of LPS for 6 h. Cells were then collected for whole cell protein expression analysis of signaling and inflammatory molecules via western blot. RESULTS: Pre-treatment with 100, 200 and 400 µg/ml of COE significantly reduced Akt phosphorylation in LPS stimulated macrophages compared to LPS alone (P ≤ 0.003). NF-κB expression was significantly attenuated with 400 µg/ml of COE compared to LPS treatment alone (P = 0.01). LPS induced cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) expression, which was significantly decreased by treatment with 400 µg/ml COE (P = 0.0001 and 0.02, respectively). COE dose-dependently decreased LPS-induced expression of interleukin (IL)-1ß (P ≤ 0.0008) and IL-6 (P = 0.01). CONCLUSION: In summary, COE attenuated the inflammatory response induced by LPS in RAW 264.7 macrophages, likely due to Akt inhibition.


Asunto(s)
Antiinflamatorios/farmacología , Cornus/química , Inflamación/tratamiento farmacológico , Extractos Vegetales/farmacología , Polifenoles/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Antiinflamatorios/química , Biomarcadores/metabolismo , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Subunidad p50 de NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fosforilación/efectos de los fármacos , Extractos Vegetales/química , Polifenoles/química , Prostaglandina-Endoperóxido Sintasas/metabolismo , Células RAW 264.7 , Factor de Necrosis Tumoral alfa/metabolismo
17.
Sci Rep ; 10(1): 20775, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33247192

RESUMEN

The role of weak acids with pH values in the range of 4-7 has been implicated in the symptoms of gastroesophageal reflux disease (GERD). Prostaglandin E2 (PGE2) is associated with heartburn symptom in GERD patients; however, the precise productive mechanisms remain unclear. In this study, we revealed that exposure to weak acids increases PGE2 production with a peak at pH 4-5, slightly in human normal oesophageal cells (Het-1A), and robustly in oesophageal squamous carcinoma cells (KYSE-270). Release of PGE2 from the oesophageal mucosa was augmented by weak acid treatment in rat. Chenodeoxycholic acid (CDCA), a bile acid, upregulated cyclooxygenase-2 (COX-2) expression in Het-1A and KYSE-270 and induced PGE2 production in KYSE-270 cells. Weak acid-induced PGE2 production was significantly inhibited by cytosolic phospholipase A2 (cPLA2), ERK, and transient receptor potential cation channel subfamily V member 4 (TRPV4), a pH-sensing ion channel, inhibitors. Hangeshashinto, a potent inhibitor of COX-2, strongly decreased weak acid- and CDCA-induced PGE2 levels in KYSE-270. These results indicated that weak acids induce PGE2 production via TRPV4/ERK/cPLA2 in oesophageal epithelial cells, suggesting a role in GERD symptoms like heartburn. Interventions targeting pH values up to 5 may be necessary for the treatment of GERD.


Asunto(s)
Ácidos/efectos adversos , Dinoprostona/biosíntesis , Mucosa Esofágica/efectos de los fármacos , Mucosa Esofágica/metabolismo , Reflujo Gastroesofágico/etiología , Reflujo Gastroesofágico/metabolismo , Animales , Células Cultivadas , Ácido Quenodesoxicólico/efectos adversos , Inhibidores de la Ciclooxigenasa 2/farmacología , Medicamentos Herbarios Chinos/farmacología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Reflujo Gastroesofágico/tratamiento farmacológico , Pirosis/etiología , Pirosis/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Modelos Biológicos , Prostaglandina-Endoperóxido Sintasas/metabolismo , Ratas , Canales Catiónicos TRPV/metabolismo
18.
Sci Rep ; 10(1): 11785, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32678210

RESUMEN

The widely used mood stabilizer valproate (VPA) causes perturbation of energy metabolism, which is implicated in both the therapeutic mechanism of action of the drug as well as drug toxicity. To gain insight into these mechanisms, we determined the effects of VPA on energy metabolism in yeast. VPA treatment increased levels of glycolytic intermediates, increased expression of glycolysis genes, and increased ethanol production. Increased glycolysis was likely a response to perturbation of mitochondrial function, as reflected in decreased membrane potential and oxygen consumption. Interestingly, yeast, mouse liver, and isolated bovine cytochrome c oxidase were directly inhibited by the drug, while activities of other oxidative phosphorylation complexes (III and V) were not affected. These findings have implications for mechanisms of therapeutic action and toxicity.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Ácido Valproico/farmacología , Animales , Glucólisis , Ratones , Fosforilación Oxidativa/efectos de los fármacos , Consumo de Oxígeno , Prostaglandina-Endoperóxido Sintasas/metabolismo
19.
Anal Chem ; 92(17): 11558-11564, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32583666

RESUMEN

Floating cancer cells can survive the programmed death anoikis process after detaching from the extracellular matrix for the anchorage-dependent cells. Purification of viable floating cancer cells is essential for many biomedical studies, such as drug screening and cancer model development. However, the floating cancer cells are mixed with dead cells and debris in the medium supernatant. In this paper, we developed an inertial microfluidic device with sinusoidal microchannels to continuously remove dead cells and debris from viable cells. First, we characterized the differential inertial focusing properties of polystyrene beads in the devices. Then, we investigated the effects of flow rate on inertial focusing of floating MDA-MB-231 cells. At an optimal flow condition, purification of viable cells was performed and the purity of live cells was increased significantly from 19.9% to 76.6%, with a recovery rate of 69.7%. After separation, we studied and compared the floating and adherent MDA-MB-231 cells in terms of cell proliferation, protrusive cellular structure, and the expression of cyclooxygenase (Cox-2) which is related to epithelial-mesenchymal transition (EMT) changes. Meanwhile, drug screening of both floating and adherent cancer cells was conducted using a chemotherapeutic drug, doxorubicin (Dox). The results revealed that the floating cancer cells possess 30-fold acquired chemoresistance as compared to the adherent cancer cells. Furthermore, a three-dimensional (3D) double-cellular coculture model of human mammary fibroblasts (HMF) spheroid and cancer cells using the floating liquid marble technique was developed.


Asunto(s)
Separación Celular/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Microfluídica/instrumentación , Adhesión Celular , Línea Celular Tumoral , Proliferación Celular , Células Cultivadas , Técnicas de Cocultivo , Doxorrubicina/farmacología , Evaluación Preclínica de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Diseño de Equipo , Fibroblastos/citología , Humanos , Microesferas , Tamaño de la Partícula , Prostaglandina-Endoperóxido Sintasas/metabolismo
20.
Microvasc Res ; 131: 104030, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32531353

RESUMEN

Previous studies indicate that sex-related differences exist in the regulation of cutaneous vasodilation, however, the mechanisms remain unresolved. We assessed if sex-differences in young adults exist for cholinergic, nicotinic, and ß-adrenergic cutaneous vasodilation with a focus on nitric oxide synthase (NOS), cyclooxygenase (COX), and K+ channel mechanisms. In twelve young men and thirteen young women, four intradermal forearm skin sites were perfused with the following: 1) lactated Ringer's solution (control), 2) 10 mM Nω-nitro-l-arginine, a non-selective NOS inhibitor, 3) 10 mM ketorolac, a non-selective COX inhibitor, or 4) 50 mM BaCl2, a nonspecific K+ channel blocker. At all four sites, cutaneous vasodilation was induced by 1) 10 mM nicotine, a nicotinic receptor agonist, 2) 100 µM isoproterenol, a nonselective ß-adrenergic receptor agonist, and 3) 2 mM and 2000 mM acetylcholine, an acetylcholine receptor agonist. Nicotine and isoproterenol were administered for 3 min, whereas each acetylcholine dose was administered for 25 min. Regardless of treatment site, cutaneous vasodilation in response to nicotine and a high dose of acetylcholine (2000 mM) were lower in women than men. By contrast, isoproterenol induced cutaneous vasodilation was greater in women vs. men. Irrespective of sex, NOS inhibition or K+ channel blockade attenuated isoproterenol-mediated cutaneous vasodilation, whereas K+ channel blockade decreased nicotine-induced cutaneous vasodilation. Taken together, our findings indicate that while the mechanisms underlying cutaneous vasodilation are comparable between young men and women, sex-related differences in the magnitude of cutaneous vasodilation do exist and this response differs as a function of the receptor agonist.


Asunto(s)
Vasos Sanguíneos/enzimología , Óxido Nítrico Sintasa/metabolismo , Canales de Potasio/metabolismo , Prostaglandina-Endoperóxido Sintasas/metabolismo , Receptores Adrenérgicos beta/metabolismo , Receptores Colinérgicos/metabolismo , Piel/irrigación sanguínea , Vasodilatación , Agonistas Adrenérgicos beta/farmacología , Adulto , Vasos Sanguíneos/efectos de los fármacos , Agonistas Colinérgicos/farmacología , Inhibidores de la Ciclooxigenasa/farmacología , Femenino , Antebrazo , Humanos , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/efectos de los fármacos , Receptores Nicotínicos/metabolismo , Factores Sexuales , Transducción de Señal , Vasodilatación/efectos de los fármacos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA